首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   991篇
  免费   81篇
  国内免费   118篇
  2024年   2篇
  2023年   13篇
  2022年   11篇
  2021年   31篇
  2020年   34篇
  2019年   46篇
  2018年   29篇
  2017年   45篇
  2016年   36篇
  2015年   28篇
  2014年   44篇
  2013年   58篇
  2012年   26篇
  2011年   74篇
  2010年   21篇
  2009年   47篇
  2008年   56篇
  2007年   49篇
  2006年   44篇
  2005年   41篇
  2004年   38篇
  2003年   40篇
  2002年   43篇
  2001年   56篇
  2000年   43篇
  1999年   34篇
  1998年   21篇
  1997年   25篇
  1996年   16篇
  1995年   25篇
  1994年   24篇
  1993年   20篇
  1992年   8篇
  1991年   7篇
  1990年   8篇
  1989年   8篇
  1988年   3篇
  1987年   6篇
  1986年   5篇
  1985年   4篇
  1984年   3篇
  1982年   11篇
  1981年   1篇
  1978年   3篇
  1977年   1篇
  1973年   1篇
  1958年   1篇
排序方式: 共有1190条查询结果,搜索用时 750 毫秒
1.
We undertook a 2-year (2002–2004) mark–recapture study to investigate demographic performance and habitat use of salt marsh harvest mice (Reithrodontomys raviventris halicoetes) in the Suisun Marsh. We examined the effects of different wetland types and microhabitats on 3 demographic variables: density, reproductive potential, and persistence. Our results indicate that microhabitats dominated by mixed vegetation or pickleweed (Salicornia spp.) supported similar salt marsh harvest mouse densities, reproductive potential, and persistence throughout much of the year, whereas few salt marsh harvest mice inhabited upland grass-dominated microhabitats. We found that densities were higher in diked wetlands, whereas post-winter persistence was higher in tidal wetlands, and reproductive potential did not differ statistically between wetland types. Our results emphasize the importance of mixed vegetation for providing adequate salt marsh harvest mouse habitat and suggest that, despite their physiognomic and hydrological differences, both diked and tidal wetlands support salt marsh harvest mouse populations by promoting different demographic attributes. We recommend that habitat management, restoration, and enhancement efforts include areas containing mixed vegetation in addition to pickleweed in both diked and tidal wetlands. © 2011 The Wildlife Society.  相似文献   
2.
3.
4.
Three field experiments were performed in Lake Lacawac, PA to determine the importance of potentially limiting nutrients relative to other factors (grazing, depth) in structuring shallow water algal periphyton communities. All three experiments measured periphyton growth (as chlorophyll-a, AFDM or biovolumes of the algal taxa) on artificial clay flower pot substrates which released specified nutrients to their outer surfaces.Control of standing crop by nutrient supply rate vs. grazing was examined in Expt. I. Substrates releasing excess N and P, together with one of 4 levels of C (as bicarbonate) were placed either inside or outside exclosures designed to reduce grazer densities. Chlorophyll-a rose from 1.1–25.6 µg.cm–2, and some dominant taxa (e.g., Oedogonium, Nostoc, Anacystis) were replaced by others (e.g., Scenedesmus, Cryptomonas) as bicarbonate supply increased. Reductions in invertebrate density did not significantly affect chlorophyll-a at any of the nutrient levels.Reasons for the species shift were further evaluated in Expt. II, using a minielectrode to measure the elevation of pH within the periphyton mat through photosynthetic utilization of bicarbonate. The pH adjacent to pots diffusing N, P and large quantities of bicarbonate, and supporting high chlorophyll-a densities of 32 µg cm–2, averaged 10.0 compared to 6.3 in the water column. Pots diffusing only N and P supported 0.7 µg chlorophyll-a cm–2 and elevated pH to 8.2. We suspect that bicarbonate addition favored efficient bicarbonate users (e.g., Scenedesmus), while inhibiting other taxa (e.g., Oedogonium) because of the attendant high pH.Expt. III was designed to test effects of depth (0.1 m vs. 0.5 m) and N (NH4 + vs. NO3 ) upon the growth response to bicarbonate observed in Expts. I and II. Similar standing crop and species composition were noted on pots at 0.1 m vs. 0.5 m. Enrichment with NH4 + vs. NO3 also appeared to have little effect upon the periphyton community.Shallow water periphyton communities in Lake Lacawac, when supplied with sufficient N and P, appear to show a distinctive response to increasing bicarbonate concentration and pH which is robust to moderate variation in grazer densities, distance from the water surface, and the form of N enrichment.  相似文献   
5.
Control of plant growth by nitrogen and phosphorus in mesotrophic fens   总被引:7,自引:0,他引:7  
A fertilization experiment was carried out in 3 mesotrophic fens to investigate whether plant growth in these systems is controlled by the availability of N, P or K. The fens are located in an area with high N inputs from precipitation. They are annually mown in the summer to prevent succession to woodland. Above-ground plant biomass increased significantly upon N fertilization in the two mid-succession fens studied. In the late-succession fen that had been mown for at least 60 years, however, plant biomass increased significantly upon P fertilization. The mowing regime depletes the P pool in the soil, while it keeps N inputs and outputs in balance. A long-term shift occurs from limitation of plant production by N toward limitation by P. Hence, mowing is a suitable management tool to conserve the mesothrophic character of the fens.  相似文献   
6.
We analyzed data from Section 404 permits issued in California from January 1971 through November 1987 that involved impacts to wetlands and required compensatory mitigation (wetland creation, restoration, or preservation). The purpose of this study was to determine patterns and trends in permitting activity and to document cumulative effects of associated management decisions on the California wetland resource. The 324 permits examined documented that 387 compensatory wetlands (1255.9 ha) were required as mitigation for impacts to 368 wetlands (1176.3 ha). The utility of the data on wetland area was limited, however, since 38.0% of the impacted wetlands and 41.6% of the compensatory wetlands lacked acreage data. The wetland type most frequently impacted (37.8% of impacted wetlands) and used in compensation (38.2% of compensatory wetlands) was palustrine forested wetlands. Estuarine intertidal emergent wetlands had the most area impacted (52.3%) and compensated (62.5%). The majority of the wetlands were small (less than or equal to 4.0 ha in size). Wildlife habitat was the most frequently listed function of impacted wetlands (90.7% of the permits) and objective of compensatory wetlands (83.3%). Endangered species were listed as affected in 20.4% of impacted and 21.0% of compensatory projects. The number of permits requiring compensatory mitigation and the number of impacted and compensatory wetlands increased from 1971 to 1986.Documentation of the details of Section 404 permit decisions was inadequate for the permits we examined. Area information and specific locations of impacted and compensatory wetlands were lacking or of poor quality. Follow-up information was also inadequate. For example, project completion dates were specified in the permit for only 2.2% of compensatory wetlands. Furthermore, less than one-third (31.5%) of the permits required the compensatory wetland to be monitored by at least one site visit. We recommend improved documentation, regular reporting, and increased monitoring for better evaluation of the Section 404 permitting system.  相似文献   
7.
An early successional wetland complex on a reclaimed surface coal mine in southern Illinois was studied 1985–1987. Seasonally, biomass was low, with above-ground values of 10–210g m–2 and below-ground biomass of 1.5–2435 g m–2. Biomass peaked in spring and did not vary much throughout the remainder of the growing season. Stem densities were high (179–1467 m–2) because large numbers of seedlings became established as falling water levels exposed large areas of mudflats. Fluctuating water levels led to a lack of community zonation. Species diversity (H) was low to moderate over all sites with diversity values ranging between 1.86 and 3.27.  相似文献   
8.
9.
At Big Run Bog, aSphagnum-dominated peatland in the unglaciated Appalachian Plateau of West Virginia, significant spatial variation in the physical and chemical properties of the peat and in surface and subsurface (30 cm deep) water chemistry was characterized. The top 40 cm of organic peat at Big Run Bog had average values for bulk density of 0.09 g · cm–3, organic matter concentration of 77%, and volumetric water content of 88%. Changes in physical and chemical properties within the peat column as a function of depth contributed to different patterns of seasonal variation in the chemistry of surface and subsurface waters. Seasonal variation in water chemistry was related to temporal changes in plant uptake, organic matter decomposition and element mineralization, and to varying redox conditions associated with fluctuating water table levels. On the average, total Ca, Mg, and N concentrations in Big Run Bog peat were 33, 15, and 1050 mol · g–1, respectively; exchangeable Ca and Mg concentrations were 45 and 14 eq · g–1 , respectively. Surface water pH averaged 4.0 and Ca++ concentrations were less than 50 eq · L–1 . These chemical variables have all been used to distinguish bogs from fens. Physiographically, Big Run Bog is a minerotrophic fen because it receives inputs of water from the surrounding forested upland areas of its watershed. However, chemically, Big Run Bog is more similar to true ombrotrophic bogs than to minerotrophic fens.  相似文献   
10.
Interactions have been studied between juvenile plants of green, brown, and red marine algae and 31 diatom clones isolated from a variety of marine eulittoral habitats. The interactions seemed to be of an individual nature for both juvenile plants and diatoms. Germlings of Ulva lactuca L. mostly showed enhanced growth, often with significant increases in population sizes of the accompanying diatoms. Fucus spiralis L. germlings were mainly unaffected by growth in the presence of the diatom clones, but growth of the diatoms was often stimulated. Ascophyllum nodosum (L.) Le Jol. germlings were little affected, whilst the accompanying diatoms were less noticeably affected than with Fucus spiralis. Germlings of F. vesiculosus L. often showed growth inhibitions in the presence of diatoms, with many diatom populations showing enhanced growth. Similarly, the discoid encrusting sporelings of Chondrus crispus Stackh. showed growth inhibitions where there were measurable interactions, although the accompanying diatoms usually failed to show growth stimulations. The discoid sporelings of Gigartina stellata (Stackh. in With.) Batt. showed high mortalities, usually with marked increases in population sizes of accompanying diatoms.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号